Microscopy lab services with Microvisionlabs.com near me
Eds testing laboratories in Chelmsford, MA near me? The profile of the flow of the solder at these bonds was documented using the SEM with backscatter imaging, which correlates brightness in the image with atomic density. Some voids were found in the solder as shown the SEM image. An EDS spectrum of the solder was acquired which showed that the solder was a tin/lead (80/20) solder. The EDS map clearly shows the copper wire and copper pad (red) with the tin lead solder (light blue) that appears to have flowed well and made a good bond between the copper elements. This map also shows the fiberglass bundles that add structural integrity to the board.
Analysis and Results: The submitted bottle was examined for signs of interior distress, and the water from the bottle was removed and maintained. Some of the suspended particulate was filtered and examined non-destructively by light microscopy first, to characterize the material. A low magnification stereo microscope image of the filtered white particulate is shown in the image above. From this image, biological tissues were ruled out, and the material was observed to be crystalline. Polarized light microscopy (PLM) was used to analyze the sample next. From this examination, the material showed birefringence as shown in the PLM image on the right. The PLM Image Stereo Microscope image suspect material showed optical properties and morphology dissimilar to common carbonates and sulfates. It was determined to be a birefringent crystalline material, but it could not be identified using only PLM methods. Therefore, analysis using scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS) would have to be performed to obtain further information about the suspect material.
Examining the sample with a polarized light microscope (PLM), it was darker and coarser than expected for a mold sample. The dust appeared to be a closed cell, synthetic blown foam material, and all from the same source. The black color was likely due to pigment particles added to color the foam. Fourier Transform Infra-Red spectroscopy was performed on the foam particles. The spectrum showed a mixture of spectral features, associated with vinyl acetates, polyurethane, and cellulose or other sugar-like polymers. Based on these features, a common urethane acetate foam was determined as the likely source material.
MicroVision Laboratories, Inc. has been providing businesses, consultants and other testing laboratories with expert microscopy and analytical services since 2003. Our client base covers a broad spectrum of industries including semi-conductors, aerospace, electronics, biomedical, ceramics, optics, pharmaceuticals, mineralogy, metallurgy, thin films, environmental, membranes filtration and industrial hygiene. Read a few extra info on Microvision laboratories.
Do you give lab tours? Yes, we routinely give lab tours to our clients and potential clients. Please call and we would be happy to schedule a tour for you and your co-workers. Do you have other locations around the country? We do work for companies all across the United States, with one laboratory which is located in Chelmsford, Massachusetts. Did MicroVision Labs ever operate under a different company name? No, we have always been MicroVision Laboratories, Inc. Our founder, John Knowles, used to work for another laboratory that underwent several name changes (Eastern Analytical Laboratories, Industrial Environmental Analysts, American Environmental Network, Severn Trent Laboratories, and EMLab P&K Billeria) and was located nearby in Billerica. When that laboratory was closed in 2008, John hired a few of the remaining analysts and acquired its equipment, client list and phone number.
Our membrane autopsy service uses a combination of microscopy techniques to examine filtration membranes and identify the elemental and chemical composition of any foulant materials present. This analysis also categorizes the degree of fouling and notes any other causes for poor performance, such as physical damage to the membrane surface. MicroVision Labs has extensive experience examining a wide variety of RO, UF and MF membranes, including hollow fibers, cartridge, spiral wound, and tubular membranes. Find a few extra info at https://microvisionlabs.com/.